'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  0(x1) -> 1(x1)
     , 0(0(x1)) -> 0(x1)
     , 3(4(5(x1))) -> 4(3(5(x1)))
     , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
       ->
       0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
     , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
       ->
       2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  0^#(x1) -> c_0()
    , 0^#(0(x1)) -> c_1(0^#(x1))
    , 3^#(4(5(x1))) -> c_2(3^#(5(x1)))
    , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
      ->
      c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
    , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
      ->
      c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
  
  The usable rules are:
   {  0(x1) -> 1(x1)
    , 0(0(x1)) -> 0(x1)
    , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
      ->
      0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
    , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
      ->
      2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
  
  The estimated dependency graph contains the following edges:
   {0^#(0(x1)) -> c_1(0^#(x1))}
     ==> {0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
          ->
          c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
   {0^#(0(x1)) -> c_1(0^#(x1))}
     ==> {0^#(0(x1)) -> c_1(0^#(x1))}
   {0^#(0(x1)) -> c_1(0^#(x1))}
     ==> {0^#(x1) -> c_0()}
   {2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
    ->
    c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
     ==> {0^#(x1) -> c_0()}
   {0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
    ->
    c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
     ==> {2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
          ->
          c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
  
  We consider the following path(s):
   1) {  0^#(0(x1)) -> c_1(0^#(x1))
       , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
       , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
      
      The usable rules for this path are the following:
      {  0(x1) -> 1(x1)
       , 0(0(x1)) -> 0(x1)
       , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
       , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           0(x1) = [1] x1 + [10]
           1(x1) = [1] x1 + [1]
           3(x1) = [0] x1 + [0]
           4(x1) = [0] x1 + [0]
           5(x1) = [0] x1 + [0]
           2(x1) = [1] x1 + [8]
           0^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1(x1) = [0] x1 + [0]
           3^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           2^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules:
              {2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
            Weak Rules:
              {  0(x1) -> 1(x1)
               , 0(0(x1)) -> 0(x1)
               , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 ->
                 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 ->
                 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 ->
                 c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               , 0^#(0(x1)) -> c_1(0^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             ->
             c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
            and weakly orienting the rules
            {  0(x1) -> 1(x1)
             , 0(0(x1)) -> 0(x1)
             , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             , 0^#(0(x1)) -> c_1(0^#(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  0(x1) = [1] x1 + [6]
                  1(x1) = [1] x1 + [5]
                  3(x1) = [0] x1 + [0]
                  4(x1) = [0] x1 + [0]
                  5(x1) = [0] x1 + [0]
                  2(x1) = [1] x1 + [8]
                  0^#(x1) = [1] x1 + [8]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [1]
                  3^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  2^#(x1) = [1] x1 + [8]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [8]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 0(x1) -> 1(x1)
                 , 0(0(x1)) -> 0(x1)
                 , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 0^#(0(x1)) -> c_1(0^#(x1))}
            
            Details:         
              The given problem does not contain any strict rules
      
   2) {  0^#(0(x1)) -> c_1(0^#(x1))
       , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
       , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
       , 0^#(x1) -> c_0()}
      
      The usable rules for this path are the following:
      {  0(x1) -> 1(x1)
       , 0(0(x1)) -> 0(x1)
       , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
       , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           0(x1) = [1] x1 + [10]
           1(x1) = [1] x1 + [1]
           3(x1) = [0] x1 + [0]
           4(x1) = [0] x1 + [0]
           5(x1) = [0] x1 + [0]
           2(x1) = [1] x1 + [8]
           0^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1(x1) = [0] x1 + [0]
           3^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           2^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {0^#(x1) -> c_0()}
            Weak Rules:
              {  0(x1) -> 1(x1)
               , 0(0(x1)) -> 0(x1)
               , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 ->
                 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 ->
                 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 ->
                 c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 ->
                 c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               , 0^#(0(x1)) -> c_1(0^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0^#(x1) -> c_0()}
            and weakly orienting the rules
            {  0(x1) -> 1(x1)
             , 0(0(x1)) -> 0(x1)
             , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             , 0^#(0(x1)) -> c_1(0^#(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(x1) -> c_0()}
              
              Details:
                 Interpretation Functions:
                  0(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  3(x1) = [0] x1 + [0]
                  4(x1) = [0] x1 + [0]
                  5(x1) = [0] x1 + [0]
                  2(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  3^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  2^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  0^#(x1) -> c_0()
                 , 0(x1) -> 1(x1)
                 , 0(0(x1)) -> 0(x1)
                 , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 0^#(0(x1)) -> c_1(0^#(x1))}
            
            Details:         
              The given problem does not contain any strict rules
      
   3) {  0^#(0(x1)) -> c_1(0^#(x1))
       , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
      
      The usable rules for this path are the following:
      {  2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
       , 0(x1) -> 1(x1)
       , 0(0(x1)) -> 0(x1)
       , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
         ->
         2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           0(x1) = [1] x1 + [9]
           1(x1) = [1] x1 + [2]
           3(x1) = [0] x1 + [0]
           4(x1) = [0] x1 + [0]
           5(x1) = [0] x1 + [0]
           2(x1) = [1] x1 + [8]
           0^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1(x1) = [0] x1 + [0]
           3^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           2^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules:
              {0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
            Weak Rules:
              {  2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 ->
                 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               , 0(x1) -> 1(x1)
               , 0(0(x1)) -> 0(x1)
               , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 ->
                 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               , 0^#(0(x1)) -> c_1(0^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             ->
             c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
            and weakly orienting the rules
            {  2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             , 0(x1) -> 1(x1)
             , 0(0(x1)) -> 0(x1)
             , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
             , 0^#(0(x1)) -> c_1(0^#(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
               ->
               c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  0(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  3(x1) = [0] x1 + [0]
                  4(x1) = [0] x1 + [0]
                  5(x1) = [0] x1 + [0]
                  2(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  3^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  2^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 0(x1) -> 1(x1)
                 , 0(0(x1)) -> 0(x1)
                 , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                   ->
                   2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
                 , 0^#(0(x1)) -> c_1(0^#(x1))}
            
            Details:         
              The given problem does not contain any strict rules
      
   4) {3^#(4(5(x1))) -> c_2(3^#(5(x1)))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           0(x1) = [0] x1 + [0]
           1(x1) = [0] x1 + [0]
           3(x1) = [0] x1 + [0]
           4(x1) = [0] x1 + [0]
           5(x1) = [0] x1 + [0]
           2(x1) = [0] x1 + [0]
           0^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1(x1) = [0] x1 + [0]
           3^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           2^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {3^#(4(5(x1))) -> c_2(3^#(5(x1)))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {3^#(4(5(x1))) -> c_2(3^#(5(x1)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {3^#(4(5(x1))) -> c_2(3^#(5(x1)))}
              
              Details:
                 Interpretation Functions:
                  0(x1) = [0] x1 + [0]
                  1(x1) = [0] x1 + [0]
                  3(x1) = [0] x1 + [0]
                  4(x1) = [1] x1 + [8]
                  5(x1) = [1] x1 + [0]
                  2(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  3^#(x1) = [1] x1 + [10]
                  c_2(x1) = [1] x1 + [2]
                  2^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {3^#(4(5(x1))) -> c_2(3^#(5(x1)))}
            
            Details:         
              The given problem does not contain any strict rules
      
   5) {  0^#(0(x1)) -> c_1(0^#(x1))
       , 0^#(x1) -> c_0()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           0(x1) = [0] x1 + [0]
           1(x1) = [0] x1 + [0]
           3(x1) = [0] x1 + [0]
           4(x1) = [0] x1 + [0]
           5(x1) = [0] x1 + [0]
           2(x1) = [0] x1 + [0]
           0^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1(x1) = [0] x1 + [0]
           3^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           2^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {0^#(x1) -> c_0()}
            Weak Rules: {0^#(0(x1)) -> c_1(0^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0^#(x1) -> c_0()}
            and weakly orienting the rules
            {0^#(0(x1)) -> c_1(0^#(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(x1) -> c_0()}
              
              Details:
                 Interpretation Functions:
                  0(x1) = [1] x1 + [0]
                  1(x1) = [0] x1 + [0]
                  3(x1) = [0] x1 + [0]
                  4(x1) = [0] x1 + [0]
                  5(x1) = [0] x1 + [0]
                  2(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  3^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  2^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  0^#(x1) -> c_0()
                 , 0^#(0(x1)) -> c_1(0^#(x1))}
            
            Details:         
              The given problem does not contain any strict rules
      
   6) {0^#(0(x1)) -> c_1(0^#(x1))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           0(x1) = [0] x1 + [0]
           1(x1) = [0] x1 + [0]
           3(x1) = [0] x1 + [0]
           4(x1) = [0] x1 + [0]
           5(x1) = [0] x1 + [0]
           2(x1) = [0] x1 + [0]
           0^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1(x1) = [0] x1 + [0]
           3^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           2^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {0^#(0(x1)) -> c_1(0^#(x1))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0^#(0(x1)) -> c_1(0^#(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(0(x1)) -> c_1(0^#(x1))}
              
              Details:
                 Interpretation Functions:
                  0(x1) = [1] x1 + [8]
                  1(x1) = [0] x1 + [0]
                  3(x1) = [0] x1 + [0]
                  4(x1) = [0] x1 + [0]
                  5(x1) = [0] x1 + [0]
                  2(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [3]
                  3^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  2^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {0^#(0(x1)) -> c_1(0^#(x1))}
            
            Details:         
              The given problem does not contain any strict rules