'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 3(4(5(x1))) -> 4(3(5(x1))) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} Details: We have computed the following set of weak (innermost) dependency pairs: { 0^#(x1) -> c_0() , 0^#(0(x1)) -> c_1(0^#(x1)) , 3^#(4(5(x1))) -> c_2(3^#(5(x1))) , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} The usable rules are: { 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} The estimated dependency graph contains the following edges: {0^#(0(x1)) -> c_1(0^#(x1))} ==> {0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} {0^#(0(x1)) -> c_1(0^#(x1))} ==> {0^#(0(x1)) -> c_1(0^#(x1))} {0^#(0(x1)) -> c_1(0^#(x1))} ==> {0^#(x1) -> c_0()} {2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} ==> {0^#(x1) -> c_0()} {0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} ==> {2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} We consider the following path(s): 1) { 0^#(0(x1)) -> c_1(0^#(x1)) , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} The usable rules for this path are the following: { 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: 0(x1) = [1] x1 + [10] 1(x1) = [1] x1 + [1] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [1] x1 + [8] 0^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} Weak Rules: { 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(x1)) -> c_1(0^#(x1))} Details: We apply the weight gap principle, strictly orienting the rules {2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} and weakly orienting the rules { 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(x1)) -> c_1(0^#(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} Details: Interpretation Functions: 0(x1) = [1] x1 + [6] 1(x1) = [1] x1 + [5] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [1] x1 + [8] 0^#(x1) = [1] x1 + [8] c_0() = [0] c_1(x1) = [1] x1 + [1] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [1] x1 + [8] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [8] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(x1)) -> c_1(0^#(x1))} Details: The given problem does not contain any strict rules 2) { 0^#(0(x1)) -> c_1(0^#(x1)) , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(x1) -> c_0()} The usable rules for this path are the following: { 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: 0(x1) = [1] x1 + [10] 1(x1) = [1] x1 + [1] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [1] x1 + [8] 0^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {0^#(x1) -> c_0()} Weak Rules: { 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(x1)) -> c_1(0^#(x1))} Details: We apply the weight gap principle, strictly orienting the rules {0^#(x1) -> c_0()} and weakly orienting the rules { 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(x1)) -> c_1(0^#(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(x1) -> c_0()} Details: Interpretation Functions: 0(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [0] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { 0^#(x1) -> c_0() , 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_3(0^#(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(x1)) -> c_1(0^#(x1))} Details: The given problem does not contain any strict rules 3) { 0^#(0(x1)) -> c_1(0^#(x1)) , 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} The usable rules for this path are the following: { 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: 0(x1) = [1] x1 + [9] 1(x1) = [1] x1 + [2] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [1] x1 + [8] 0^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} Weak Rules: { 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(x1)) -> c_1(0^#(x1))} Details: We apply the weight gap principle, strictly orienting the rules {0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} and weakly orienting the rules { 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(x1)) -> c_1(0^#(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))} Details: Interpretation Functions: 0(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [0] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { 0^#(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> c_4(2^#(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 0(1(0(1(0(0(1(0(0(0(0(0(0(1(0(1(1(0(1(1(1(0(1(0(0(1(0(1(1(0(0(0(1(1(1(1(1(1(0(1(0(0(0(1(1(0(0(0(1(0(1(1(1(0(1(1(0(1(1(0(0(1(1(1(1(0(1(1(1(1(1(0(0(1(0(0(1(1(1(1(0(1(1(0(0(0(1(1(1(1(0(0(0(1(1(0(0(0(0(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(1(1(1(1(1(1(0(0(0(0(1(0(0(0(0(0(0(1(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0(x1) -> 1(x1) , 0(0(x1)) -> 0(x1) , 0(0(1(1(0(0(1(1(1(0(0(0(1(1(1(0(1(0(1(1(1(1(0(0(0(1(0(1(1(0(0(1(1(0(0(0(1(1(1(0(1(0(1(0(0(1(0(0(0(1(1(0(1(0(0(1(0(0(1(0(0(1(0(0(0(0(1(0(0(1(0(1(1(0(0(1(1(0(1(0(1(0(1(1(1(0(0(0(1(0(1(0(0(1(0(1(0(1(0(0(0(0(0(0(1(1(0(1(1(1(0(1(0(1(1(0(1(0(0(0(1(1(1(1(0(1(1(1(1(1(0(1(0(1(1(0(1(1(0(1(0(0(1(1(x1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -> 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(x1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) , 0^#(0(x1)) -> c_1(0^#(x1))} Details: The given problem does not contain any strict rules 4) {3^#(4(5(x1))) -> c_2(3^#(5(x1)))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: 0(x1) = [0] x1 + [0] 1(x1) = [0] x1 + [0] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {3^#(4(5(x1))) -> c_2(3^#(5(x1)))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {3^#(4(5(x1))) -> c_2(3^#(5(x1)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {3^#(4(5(x1))) -> c_2(3^#(5(x1)))} Details: Interpretation Functions: 0(x1) = [0] x1 + [0] 1(x1) = [0] x1 + [0] 3(x1) = [0] x1 + [0] 4(x1) = [1] x1 + [8] 5(x1) = [1] x1 + [0] 2(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] 3^#(x1) = [1] x1 + [10] c_2(x1) = [1] x1 + [2] 2^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {3^#(4(5(x1))) -> c_2(3^#(5(x1)))} Details: The given problem does not contain any strict rules 5) { 0^#(0(x1)) -> c_1(0^#(x1)) , 0^#(x1) -> c_0()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: 0(x1) = [0] x1 + [0] 1(x1) = [0] x1 + [0] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {0^#(x1) -> c_0()} Weak Rules: {0^#(0(x1)) -> c_1(0^#(x1))} Details: We apply the weight gap principle, strictly orienting the rules {0^#(x1) -> c_0()} and weakly orienting the rules {0^#(0(x1)) -> c_1(0^#(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(x1) -> c_0()} Details: Interpretation Functions: 0(x1) = [1] x1 + [0] 1(x1) = [0] x1 + [0] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [0] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { 0^#(x1) -> c_0() , 0^#(0(x1)) -> c_1(0^#(x1))} Details: The given problem does not contain any strict rules 6) {0^#(0(x1)) -> c_1(0^#(x1))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: 0(x1) = [0] x1 + [0] 1(x1) = [0] x1 + [0] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {0^#(0(x1)) -> c_1(0^#(x1))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {0^#(0(x1)) -> c_1(0^#(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(0(x1)) -> c_1(0^#(x1))} Details: Interpretation Functions: 0(x1) = [1] x1 + [8] 1(x1) = [0] x1 + [0] 3(x1) = [0] x1 + [0] 4(x1) = [0] x1 + [0] 5(x1) = [0] x1 + [0] 2(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [3] 3^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 2^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {0^#(0(x1)) -> c_1(0^#(x1))} Details: The given problem does not contain any strict rules